Senin, 19 November 2012

FAKTORISASI SUKU ALJABAR


FAKTORISASI SUKU
                                   ALJABAR
Pernahkah kalian berbelanja di supermarket?
Sebelum berbelanja, kalian pasti
memperkirakan barang apa saja yang akan
dibeli dan berapa jumlah uang yang harus
dibayar. Kalian dapat memperkirakan jumlah
uang yang harus dibayar jika kalian
mengetahui harga dan banyaknya barang
yang akan dibeli. Untuk menghitungnya,
kalian tentu memerlukan cara perkalian atau
                menggunakan cara faktorisasi.
                                                                                                                                                                                                                                                                                                                                                                



Tujuan pembelajaranmu pada bab ini adalah:
�� dapat menyelesaikan operasi tambah, kurang, kali, bagi, dan pangkat pada
bentuk aljabar;
�� dapat menentukan faktor suku aljabar;
�� dapat menguraikan bentuk aljabar ke dalam faktor-faktornya.
1
Kata-Kata Kunci:
�� penjumlahan bentuk aljabar �� perpangkatan bentuk aljabar
�� pengurangan bentuk aljabar �� faktor suku aljabar
�� perkalian bentuk aljabar        �� faktorisasi bentuk aljabar
             �� pembagian bentuk aljabar
A. PENGERTIAN KOEFISIEN, VARIABEL,
KONSTANTA, DAN SUKU
Di kelas VII kalian telah mempelajari mengenai bentukbentuk
aljabar. Coba kalian ingat kembali materi tersebut, agar
kalian dapat memahami bab ini dengan baik. Selain itu, kalian juga
harus menguasai materi tentang KPK dari dua bilangan atau lebih
dan sifat-sifat operasi hitung pada bilangan bulat. Perhatikan uraian
berikut.
Bonar dan Cut Mimi membeli alat-alat tulis di koperasi sekolah.
Mereka membeli 5 buku tulis, 2 pensil, dan 3 bolpoin. Jika buku
tulis dinyatakan dengan x, pensil dengan y, dan bolpoin dengan z
maka Bonar dan Cut Mimi membeli 5x + 2y + 3z.
Selanjutnya, bentuk-bentuk 5x + 2y + 3z, 2x2, 4xy2, 5x2 – 1,
dan (x – 1) (x + 3) disebut bentuk-bentuk aljabar. Sebelum
mempelajari faktorisasi suku aljabar, marilah kita ingat kembali
istilah-istilah yang terdapat pada bentuk aljabar.
1. Variabel
Variabel adalah lambang pengganti suatu bilangan yang belum
diketahui nilainya dengan jelas. Variabel disebut juga peubah.
Variabel biasanya dilambangkan dengan huruf kecil a, b, c, ...
CONTOH:
Tulislah setiap kalimat
berikut dengan menggunakan
variabel sebagai
pengganti bilangan yang
belum diketahui nilainya.
a. Jumlah dua bilangan
ganjil berurutan adalah
20.
b. Suatu bilangan jika
dikalikan 5 kemudian
dikurangi 3, hasilnya
                 adalah 12.
Penyelesaian:
a. Misalkan bilangan tersebut x dan x + 2, berarti
x + x + 2 = 20.
b. Misalkan bilangan tersebut x, berarti 5x – 3 = 12.

2. Konstanta
Suku dari suatu bentuk aljabar yang berupa bilangan dan tidak
memuat variabel disebut konstanta.
CONTOH:
Tentukan konstanta pada
bentuk aljabar berikut.
a. 2x2 + 3xy + 7x – y – 8
b. 3 – 4x2 – x
Penyelesaian:
a. Konstanta adalah suku yang tidak memuat variabel,
sehingga konstanta dari 2x2 + 3xy + 7x – y – 8
adalah –8.
b. Konstanta dari 3 – 4x2 – x adalah 3.

3.koefisien
Koefisien pada bentuk aljabar adalah faktor konstanta dari
suatu suku pada bentuk aljabar.
CONTOH:
Tentukan koefisien x pada
bentuk aljabar berikut.
a. 5x2y + 3x
b. 2x2 + 6x – 3
Penyelesaian:
a. Koefisien x dari 5x2y + 3x adalah 3.
b. Koefisien x dari 2x2 + 6x – 3 adalah 6.
4. Suku
Suku adalah variabel beserta koefisiennya atau konstanta
pada bentuk aljabar yang dipisahkan oleh operasi jumlah atau selisih.
a. Suku satu adalah bentuk aljabar yang tidak dihubungkan oleh
operasi jumlah atau selisih.
Contoh: 3x, 4a2, –2ab, ...
b. Suku dua adalah bentuk aljabar yang dihubungkan oleh satu
operasi jumlah atau selisih.
Contoh: a2 + 2, x + 2y, 3x2 – 5x, ...
c. Suku tiga adalah bentuk aljabar yang dihubungkan oleh dua
operasi jumlah atau selisih.
Contoh: 3x2 + 4x – 5, 2x + 2y – xy, ...
Bentuk aljabar yang mempunyai lebih dari dua suku disebut suku
banyak atau polinom.
Nanti, di tingkat yang lebih lanjut kalian akan mempelajari mengenai
suku banyak atau polinom.
B. OPERASI HITUNG PADA BENTUK ALJABAR
1. Penjumlahan dan Pengurangan
Perhatikan uraian berikut ini.
Ujang memiliki 15 kelereng merah dan 9 kelereng putih. Jika
kelereng merah dinyatakan dengan x dan kelereng putih dinyatakan
dengan y maka banyaknya kelereng Ujang adalah 15x + 9y.
7 Faktorisasi Suku Aljabar
Selanjutnya, jika Ujang diberi kakaknya 7 kelereng merah dan 3
kelereng putih maka banyaknya kelereng Ujang sekarang adalah
22x + 12y. Hasil ini diperoleh dari (15x + 9y) + (7x + 3y).
Amatilah bentuk aljabar 3x2 – 2x + 3y + x2 + 5x + 10. Sukusuku
3x2 dan x2 disebut suku-suku sejenis, demikian juga sukusuku
–2x dan 5x. Adapun suku-suku –2x dan 3y merupakan sukusuku
tidak sejenis.
Suku-suku sejenis adalah suku yang memiliki variabel
dan pangkat dari masing-masing variabel yang sama.
Pemahaman mengenai suku-suku sejenis dan suku-suku tidak
sejenis sangat bermanfaat dalam menyelesaikan operasi
penjumlahan dan pengurangan dari bentuk aljabar. Operasi
penjumlahan dan pengurangan pada bentuk aljabar dapat
diselesaikan dengan memanfaatkan sifat komutatif, asosiatif, dan
distributif dengan memerhatikan suku-suku yang sejenis. Coba
kalian ingat kembali sifat-sifat yang berlaku pada penjumlahan dan
pengurangan bilangan bulat. Sifat-sifat tersebut berlaku pada
penjumlahan dan pengurangan bentuk aljabar.
1. Tentukan hasil penjumlahan
3x2 – 2x + 5
dengan x2 + 4x – 3.
Penyelesaian:
(3x2 – 2x + 5) + (x2 + 4x – 3)
= 3x2 – 2x + 5 + x2 + 4x – 3
= 3x2 + x2 – 2x + 4x + 5 – 3 �� kelompokkan sukusuku
sejenis
= (3 + 1)x2 + (–2 + 4)x + (5 – 3) �� sifat distributif
= 4x2 + 2x + 2
2. Tentukan hasil pengurangan
4y2 – 3y + 2
dari 2(5y2 – 3).
Penyelesaian:
2(5y2 – 3) – (4y2 – 3y + 2)
= 10y2 – 6 – 4y2 + 3y – 2
= (10 – 4)y2 + 3y + (–6 – 2)
= 6y2 + 3y – 8

2.PERKALIAN
a. Perkalian suatu bilangan dengan bentuk aljabar
Coba kalian ingat kembali sifat distributif pada bilangan bulat.
Jika a, b, dan c bilangan bulat maka berlaku a(b + c) = ab + ac.
Sifat distributif ini dapat dimanfaatkan untuk menyelesaikan operasi
perkalian pada bentuk aljabar.
Perkalian suku dua (ax + b) dengan skalar/bilangan k
dinyatakan sebagai berikut.
k(ax + b) = kax + kb
Kerjakan soal-soal berikut di buku tugasmu.
1. Jabarkan bentuk perkalian
berikut.
a. 2(3x y)
b. 8(–x2 + 3x)
Penyelesaian:
a. 2(3x y) = 2 �� 3x + 2 �� (–y)
= 6x – 2y
b. 8(–x2 + 3x) = –8x2 + 24x
2. Selesaikan bentuk perkalian
berikut.
a. 2(–6x)
Penyelesaian:
a. 2(–6x) = 2 �� (–6) �� x
= –12x
9 Faktorisasi Suku Aljabar
b.
12 1
3
a������ ���� �� ��
c. (–4x)(–2y)
d. (3a)(–3a)
b. Perkalian antara bentuk aljabar dan bentuk aljabar
Telah kalian pelajari bahwa perkalian antara bilangan skalar
k dengan suku dua (ax + b) adalah k (ax + b) = kax + kb.
Dengan memanfaatkan sifat distributif pula, perkalian antara bentuk
aljabar suku dua (ax + b) dengan suku dua (ax + d) diperoleh
sebagai berikut.
(ax + b) (cx + d) = ax(cx + d) + b(cx + d)
= ax(cx) + ax(d) + b(cx) + bd
= acx2 + (ad + bc)x + bd
Sifat distributif dapat pula digunakan pada perkalian suku dua dan
suku tiga.
b. 12 1
3
a���� �� ���� �� ��
=
12 1
3
�������� ������ �� ��
a
= –4a
c. (–4x)(–2y) = (–4) �� (–2) �� xy
= 8xy
d. (3a)(–3a) = 3 �� (–3) �� a2
= –9a2
Panjang sisi miring
sebuah segitiga sikusiku
adalah
(5x – 3) cm, sedangkan
panjang sisi sikusikunya
(3x + 3) cm
dan (4x – 8) cm.
Tentukan keliling dan
luas segitiga tersebut
dalam bentuk aljabar.
(ax + b) (cx2 + dx + e) = ax(cx2) + ax(dx) + ax(e) + b(cx2) + b(dx) + b(e)
= acx3 + adx2 + aex + bcx2 + bdx + be
= acx3 + (ad + bc)x2 + (ae + bd)x + be
Selanjutnya, kita akan membahas mengenai hasil perkalian
(ax + b) (ax + b), (ax + b)(ax – b), (ax – b)(ax – b), dan
(ax2 + bx + c)2. Pelajari uraian berikut ini.
a. �� �� �� ���� ��
�� �� �� ��
�� �� �� �� �� ��
2
2
2 2 2
2 2 2 2
ax b ax b ax b
ax ax b b ax b
ax ax ax b b ax b
a x abx abx b
a x abx b
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� ��
b. �� ���� �� �� �� �� ��
�� �� �� �� �� �� �� ��
2 2 2
2 2 2
ax b ax b ax ax b b ax b
ax ax ax b b ax b b
a x abx abx b
a x b
�� �� �� �� �� ��
�� �� �� �� �� ��
�� �� �� ��
�� ��
(Berpikir kritis)
Dengan memanfaatkan
sifat distributif,
tentukan hasil perkalian
dari bentuk aljabar
(ax2 + bx + c)2.
Diskusikan dengan
temanmu.
c. �� �� �� ���� ��
�� �� �� ���� ��
�� �� �� �� �� ���� �� �� ���� ��
2
2 2 2
2 2 2 2
ax b ax b ax b
ax ax b b ax b
ax ax ax b b ax b b
a x abx abx b
a x abx b
�� �� �� ��
�� �� �� �� ��
�� �� �� �� �� �� �� ��
�� �� �� ��
�� �� ��
Tentukan hasil perkalian
bentuk aljabar berikut.
1. (x + 2) (x + 3)
2. (2x + 3) (x2 + 2x – 5)
Penyelesaian:
1. Cara (i) dengan sifat distributif
(x + 2) (x + 3) = x(x + 3) + 2(x + 3)
= x2 + 3x + 2x + 6
= x2 + 5x + 6
Cara (ii) dengan skema
(x + 2) (x + 3) = x2 + 3x + 2x + 6
= x2 + 5x + 6
Cara (iii) dengan peragaan mencari luas persegi panjang
dengan p = x + 3 dan l = x + 2 seperti ditunjukkan pada
Gambar 1.1.
(x + 2) (x + 3) = x2 + 3x + 2x + 6
= x2 + 5x + 6
2. Cara (i) dengan sifat distributif
(2x + 3) (x2 + 2x – 5)
= 2x(x2 + 2x – 5) + 3(x2 + 2x – 5)
= 2x3 + 4x2 – 10x + 3x2 + 6x – 15
= 2x3 + 4x2 + 3x2 – 10x + 6x – 15
= 2x3 + 7x2 – 4x – 15
x 3
x
2
(x + 2) (x + 3)
(a)
3
x
2
(b)
2 x
3 x
6
x
x2
=
Gambar 1.1
(Berpikir kritis)
Dengan menggunakan
skema, coba jabarkan
bentuk aljabar
(ax + by) (ax + by + z).
11 Faktorisasi Suku Aljabar
Cara (ii) dengan skema
(2x + 3) (x2 + 2x – 5)
= 2x3 + 4x2 – 10x + 3x2 + 6x – 15
= 2x3 + 4x2 + 3x2 – 10x + 6x – 15
= 2x3 + 7x2 – 4x – 15


Tidak ada komentar:

Poskan Komentar